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1 Introduction

The main results related to the application of integro-differentiation operators in the theory
of differential equations belong to scientists (Jrbashyan et al., 1968). Jrbashyan and Nersesyan
(1968) investigated the unambiguous solvability of the Cauchy problem for a differential equation
with one variable, with the operator of generalized Riemann-Liouville integro-differentiation, in
currently called by their names. In this case, the considering problem under consideration
is equivalently reduced to solve an integral equation of the Volterra type, and the solution is
expressed using special functions of the Mittag-Leffler type. In Jrbashyan, (1966), the properties
of the Mittag-Leffler function are investigated and the first boundary value problem is solved in
the case when the order of the equation is less than two.

In Gorenflo (2000); Kilbas (2004); Pskhu (2003), the Cauchy problem and boundary value
problems with the fractional order operator of Riemann-Liouville and Caputo, which have great
values in the construction of mathematical models in diffusion processes, were investigated for
the diffusion-wave equation. To study these problems, the method of reduction to a system of
equations of a smaller order, the Laplace transform, and also the method of the Green function
are applied.

Operator methods for solving boundary value problems for fractional order equations were
considered in the works of Ashurov at al. (2016); Luchko at al. (1999); Shinaliev at al. 2012).

The Laplace transform and the Fourier transform were also used in the works of Kilbas at
al. (2006); Gekkieva (2000) to construct fundamental solutions of fractional order diffusion and
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wave equations with Caputo and Riemann-Liouville derivatives, as well as to solve boundary
value problems and the Cauchy problem.

In Nakhushev (1959) proposed a number of problems of a new type that have entered the
mathematical literature named boundary value problems with displacement, as it turned out,
which, as it turned out, are closely related to loaded differential equations (Nakhushev, 2006).

It was found out that many very important problems of mathematical physics and biology
(Nakhushev, 1983; Nakhushev, 1995), especially the problems of long-term forecasting and regu-
lation of groundwater, the problems of heat and mass transfer with finite velocity, the movement
of a slightly compressible fluid surrounded by a porous medium, lead to boundary value problems
for loaded partial differential equations.

It should be noted that fractal objects based on non-local mathematical models of physical
and biological processes contain loaded equations with fractional derivatives. In turn, mixed
boundary value problems for partial differential equations are reduced to loaded differential
equations with integro-differential operators of integer or fractional order. In the process of
studying mixed-type equations with a load, What it the exist principles of extremum and ex-
istence theorems, as well as the methods of classical theory, cannot be applied directly. It is
important to prove the uniqueness of the solution of the considering problems for loaded equa-
tions. In this regard, in the works of Islamov at al. (1996; Islamov at al. (2011), boundary
value problems for loaded equations were considered, resulting in poorly studied Volterra and
Fredholm integral equations with a shift.

Boundary value problems for loaded equations of the second order of hyperbolic, parabolic,
hyperbolic-parabolic and elliptic-parabolic types, with one line of type change are considered
in Genaliev (2001); Kozhanov (2004); Sabitov (2015); Juraev (1979); Mikhlin (1959). Some
boundary value problems for matrix factorizations of the Helmholtz equation are considered in
Juraev (2019); Juraev (2020); Juraev at al. (2022).

In Islomov at al. (2015a;b;c); Islamov at al. (2016); Islamov at al. (2021) local and non-local
problems for loaded equations of mixed type of the second order with three lines of type change
were studied.

In work Abdullaev (2020) using the method of lines, a numerical solution of a boundary value
problem with respect to a loaded parabolic equation with nonlocal boundary conditions was in-
vestigated, and calculation formulas were obtained and an algorithm for solving the problem was
given. In Ubaydullayev (2020) the inverse problem for a mixed loaded equation with a Riemann-
Liouville operator in a rectangular domain was studied. A uniqueness criterion is established.
A solution to the problem is constructed as the sum of a series in terms of eigenfunctions of
the corresponding one-dimensional spectral problem. It is proved that the unique solvability
of the inverse problem essentially depends on the choice of the boundary of the rectangular
domain. An example is constructed in which the inverse problem with homogeneous conditions
has a nontrivial solution. In Yuldashev at al. (2020) an analogue of the Gellerstedt problem
for a loaded third-order parabolic-hyperbolic equation in an infinite three-dimensional domain
is studied. The main method for studying this Gellerstedt problem is the Fourier transform.
Based on the Fourier transform, the problem under consideration is reduced to a flat analogue
of the spectral Gellerstedt problem with a spectral parameter. The uniqueness of the solution
of this problem is proved by a new extremal principle for loaded equations of mixed type of the
third order.

This paper is devoted to the formulation and study of a local boundary value problem for
a loaded parabolic-hyperbolic equation with three lines of changes type when the loaded part
contains an integro-differential operator of fractional order.
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2 Problem statement Aµ

Consider the equation

0 =


uxx − uy − µ0D

α0
0xu(x, 0) (x, y) ∈ Ω0,

uxx − uyy − µ1D
α1
0ξ u(ξ, 0), (x, y) ∈ Ω1,

uxx − uyy − µ2D
α2
0η u(0, η), (x, y) ∈ Ω2,

uxx − uyy − µ3D
α3
0ζ u(1, ζ), (x, y) ∈ Ω3

(1)

in the domain

Figure 1: The area describing the equation (1)

Ω =
3∑
j=0

Ωj∪AB ∪BC ∪DA, where ξ = x+ y , η = y − x, and Ω0 is a region bounded by

segments AB, BC, CD, DA of straight lines y = 0, x = 1,y = 1, x = 0, respectively;
Ω1 −a characteristic triangle bounded by the segment AB of the axis Ox and two charac-

teristics AN : x + y = 0, BN : x − y = 1 of the equation (1), coming from the points A(0, 0)
and B(1, 0), intersecting at the point N (0, 5 ; −0, 5);

Ω2 −characteristic triangle bounded by the segment AD of the axis Oy and two character-
istics AK : x + y = 0,DK : y − x = 1 of the equation (1), going out from the points A(0, 0)
and D(0, 1), intersecting at the point K (−0, 5 ; 0, 5);

Ω3 −characteristic triangle bounded by the segment BC and two characteristics CM :
x+ y = 2, BM : y − x = 1 of the equation (1), going out from the points B(1, 0) and C(1, 1),
intersecting at the point M (1, 5 ; 0, 5). In the equation (1) µj (j = 1, 3) are given real numbers,
and

µj ≥ 0, 0 ≤ αj < 1, (j = 0, 3) . (2)

Here D c
k xl
f (x) is the fractional order integro-differentiation operator |c| in the Riemann-

Liouville sense (Kilbas at al., 2006):

Dc
kxlf(x) =


sgn(x−k)

Γ(−c)

x∫
k

f(t)
∣∣xl − tl∣∣−c−1

dtl, c < 0,

f(x), c = 0,

[sgn(x− k)]1+h
(

dh+1

dxl(h+1)

)h+1
D
c−(h+1)

kxl
f(x), c > 0,

(3)
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where f(x), f (h)(x) ∈ L1 (a, b), a < b < ∞, l = const > 0, h is the integer part of c (c > 0),
and Dc

kxl
≡ Dc

kxl
by x > k, Dc

kxl
≡ Dc

xlk
by x < k.

Remark 1: Note that a nonlocal boundary value problem for a model equation of mixed type
can be reduced to a local problem for loaded equations of the form (1)(Nakhushev, 1995). Let’s
introduce the notation:

J1 = {(x, y) : 0 < x < 1, y = 0} ,

J2 = {(x, y) : 0 < y < 1, x = 0} , J3 = {(x, y) : 0 < y < 1, x = 1} ,

Ω∗1 = Ω1 ∪ J1 ∪ Ω0, Ω∗2 = Ω2 ∪ J2 ∪ Ω0 ∪ J3 ∪ Ω3,

W =
{
u : u ∈ C

(
Ω̄
)
, uy ∈ C (Ω∗2) ∩ C (Ω0 ∪ J1) ∩ C (Ω1 ∪ J1) ,

ux ∈ C (Ω∗1) ∩ C (Ω0 ∪ J2 ∪ J3) ∩ C (Ω2 ∪ J2) ∩ C (Ω3 ∪ J3)} .

Definition 1. We call the solution of equation (1) as the regular solution that a function u(x, y)
have continuous partial derivatives up to the second order, inclusively, and inverting its to the
identity in the domains Ωj (j = 1, 3).

Problem Aµ. Find a regular solution of the equation (1) in the domain Ω from the class W
satisfying the boundary conditions

u(x, y)|NB = ϕ 1(x),
1

2
≤ x ≤ 1, (4)

u(x, y)|AK = ϕ2(y), 0 ≤ y ≤ 1

2
, (5)

u(x, y)|MC = ϕ3(y),
1

2
≤ y ≤ 1, (6)

and on the lines of changing the type of bonding conditions

uy(x,+0) = a1(x)uy(x,−0) + b1(x), (x, 0) ∈ J1, (7)

ux(−0, y) = a2(y)ux(+0, y) + b2(y), (0, y) ∈ J2, (8)

ux(1− 0, y) = a3 (y)ux(1 + 0, y) + b3(y), (1, y) ∈ J3, (9)

where ϕ1(x), ϕ2(y), ϕ3(y), a1(x), a2(y), a3(y), b1(x), b2(y), b3(y) are given functions, and

a1(x), b1(x) ∈ C
(
J̄1

)
∩ C 1 (J1) , (10)

aj(y), bj(y) ∈ C
(
J̄j
)
∩ C2 (Jj) , aj(y) 6= 0, ∀y ∈ J̄j , (j = 2, 3), (11)

ϕ1(1) = 0, ϕ 1(x) ∈ C1

[
1

2
, 1

]
∩ C2

(
1

2
, 1

)
, (12)

ϕ2(0) = 0, ϕ3(y) ∈ C1

[
1

2
, 1

]
∩ C2

(
1

2
, 1

)
, ϕ2(y) ∈ C1

[
0,

1

2

]
∩ C2

(
0,

1

2

)
. (13)

Remark 1. The method of research and the novelty of this work is, firstly, to find a rep-
resentation of the solution of the problem Aµ for a loaded equation, and secondly, using this
representation of the problem Aµ we can equivalently reduce it to Volterra integral equations of
the second kind with a weak singularity. The kernels and the right side of the obtained integral
equations are also studied.
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3 Deriving the main functional relations

The solution of the Cauchy problem with conditions

u (x,− 0) = τ1 (x) , (x, 0) ∈ J̄1, uy (x,−0) = ν−1 (x) , (x, 0) ∈ J1, (14)

for the equation (1) in the area of Ω1 express in the form

u (x, y) =
1

2
[τ1 (x+ y) + τ1 (x− y)] +

1

2

x+y∫
x−y

ν−1 (t) dt+

+
µ1

4

x+y∫
x−y

Dα1
0ξ τ1(ξ)dξ

x−y∫
ξ

dη. (15)

Using (4) from (15) we get

u|y=x−1 = ϕ1 (x) =
1

2
τ1 (2x− 1) +

1

2
τ1 (1) +

1

2

2x−1∫
1

ν−1 (t) dt+

+
µ1

4

2x−1∫
1

Dα1
0ξ τ1(ξ)dξ

1∫
ξ

dη,

or assuming 2x − 1 = z and changing z to x in the last relation, and then differentiating by
the variable x taking into account (3), we get a functional relation between τ1(x) and ν−1 (x),
brought from the area of Ω1 on J1 :

ν−1 (x) + τ
′
1 (x) +

µ1(1− x)

2Γ(1− α1)

x∫
0

(x− t)−α1τ ′1 (t) dt = ϕ′1

(
x+ 1

2

)
. (16)

Similarly, using the solution of the Cauchy problem with initial data

u (− 0, y) = τ2 (y) , (0, y) ∈ J̄2, ux (−0, y) = ν−2 (y) , (0, y) ∈ J2, (17)

(u (1− 0, y) = τ3 (y) , (1, y) ∈ J̄3, ux (1− 0, y) = ν−3 (y) , (1, y) ∈ J3), (18)

for the equation (1) in the domain Ω 2(Ω 3)taking into account (3), (5) and (6), we obtain
a functional relationship between τ2(x) (τ3(x)) and ν−2 (x)

(
ν−3 (x)

)
, brought from the area of

Ω2 (Ω3) on J2 (J3):

ν−2 (y)− τ ′2 (y) +
µ2y

2Γ(1− α2)

y∫
0

(y − t)−α2τ ′2 (t) dt = −ϕ′2
(y

2

)
, (19)

ν−3 (y)− τ ′3 (y) +
µ3(1− y)

2Γ(1− α3)

y∫
0

(t− y)−α3τ ′3 (t) dt = −ϕ′3
(
y + 1

2

) . (20)

Passing to limit at y → +0 in the equation (1), taking into account the function class u(x, y)
of the problem Aµ and ϕ1(0) = τ1 (0) = 0, we get the functional relationship between τ ′1(x) and
ν+

1 (x), brought from the area Ω0 to J1:

τ ′1 (x)−
x∫

0

ν+
1 (t) dt− µ0

Γ(2− α0)

x∫
0

(x− t)1−α0 τ ′1 (t) dt = τ ′1(0), (21)
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where τ ′1(0) is an unknown constant that must be defined. Solving the first boundary value
problem with the conditions u (x,+ 0) = τ1 (x) , (x, 0) ∈ J̄1, u (+0, y) = τ2 (y) , (0, y) ∈ J̄2,
u (1 + 0, y) = τ3 (y) , (1, y) ∈ J̄3 for the equation (1) in the area of Ω0 has the form (Juraev,
1979 ):

u(x, y) = u0(x, y) +

y∫
0

dη

1∫
0

P1 (x, y; ξ, η) u0(ξ, η)dξ, (22)

where

u0 (x, y) =

y∫
0

Gξ (x, y; 0, η) τ2 (η) dη +

y∫
0

Gξ (x, y; 1, η) τ3 (η) dη+

+

1∫
0

G (x, y; ξ, 0) τ1 (ξ) dξ, (23)

G(x, y; ξ, η) =
1

2
√
π (y − η)

{
exp

{
− (x− ξ)2

4 (y − η)

}
− exp

{
− (x+ ξ)2

4 (y − η)

}}
+

+
1

2
√
π (y − η)

+∞∑
n = −∞
n 6= 0

{
exp

{
−(x− ξ + 2n)2

4 (y − η)

}
− exp

{
−(x+ ξ + 2n)2

4 (y − η)

} }
, (24)

G(x, y; ξ, η) is the Green function of the first boundary value problem for the equation uxx−uy =
0, and P1(x, y; ξ, η) kernel resolvent µ0D

−α0
0ξ τ(ξ) ·G (x, y; ξ, η) .

Differentiating (22) by x, and then using the properties of the Green function taking into

account ϕ2(0) = τ2 (0) = 0, ϕ1(1) = τ3 (0) = 0, lim
z→0

z−σe−
1
z = 0, (σ > 0), we obtain,

respectively, a functional relation between τ2(y) (τ3(y)) and ν+
2 (y)

(
ν+

3 (y)
)
, brought from the

area of Ω0 to J2 (J3):

where

ν+
2 (y) = − 1√

π

y∫
0

τ
′
2 (η)√
y − η

dη − 1√
π

y∫
0

P2 (y, η)√
y − η

τ ′2 (η) dη + F2

(
y, τ ′3, τ1

)
, (25)

ν+
3 (y) =

1√
π

y∫
0

τ
′
3 (η)√
y − η

dη +
1√
π

y∫
0

P3 (y, η)√
y − η

τ ′3 (η) dη + F3

(
y, τ ′2, τ1

) , (26)

where

ux (+0, y) = ν+
2 (y) , (0, y) ∈ J2, ux (1 + 0, y) = ν+

3 (y) , (1, y) ∈ J3,

P2 (y, η) = 2
+∞∑
n=1

e
− n2

y−η , P3 (y, η) = e
− 1
y−η

+

+∞∑
n=1

e
− (n+1)2

y−η +
1

2
P2 (y, η) , (27)

F2

(
y, τ ′3, τ1

)
=

2√
π

y∫
0

τ ′3 (η)√
y − η

e
− 1

4(y−η) dη +
2√
π

y∫
0

τ ′3 (η)√
y − η

+∞∑
n=1

e
− (1+2n)2

4(y−η) dη+

+
1

2
√
πy

1∫
0

+∞∑
n=−∞

e
− 4n2+ξ2

4y

[
ξ

y
ch4ξn− 2n

y
sh4ξn)

]
τ1 (ξ) dξ+
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+
1

2
√
πΓ(1− α0)

y∫
0

dη√
y − η

×

×
1∫

0

+∞∑
n=−∞

e
− 4n2+ξ2

4(y−η)

[
ξ

y − η
ch4ξn− 2n

y − η
sh4ξn

]
dξ

ξ∫
0

(ξ − t)−α0τ ′1 (t) dt, (28)

F3

(
y, τ ′2, τ1

)
= − 2√

π

y∫
0

τ
′
2 (η)√
y − η

e
− 1

4(y−η)dη − 2√
π

y∫
0

τ
′
2 (η)√
y − η

+∞∑
n=1

e
− (1+2n)2

4(y−η) dη+

+
1

2
√
πy

1∫
0

+∞∑
n=−∞

e
− (1+2n)2+ξ2

4y

[
ξ

y
ch2ξ(1 + 2n)− 1 + 2n

y
sh2ξ(1 + 2n)

]
τ1 (ξ) dξ+

+
1

2
√
πΓ(1− α0)

y∫
0

dη√
y − η

1∫
0

+∞∑
n=−∞

e
− (1+2n)2+ξ2

4(y−η) ×

×
[

ξ

y − η
ch2ξ(1 + 2n)− 1 + 2n

y − η
sh2ξ(1 + 2n)

]
dξ×

×
ξ∫

0

(ξ − t)−α0τ ′1 (t) dt. (29)

4 Studying of the problem Aµ

Theorem 1. If the conditions (2), (9)-(12) are fulfilled and

a1(x) < 0, ∀x ∈ J̄1, (30)

then there is a single regular solution of the problem Aµ are hold true in the domain of Ω.

Proof. Excluding ν−1 (x) from the relations (16) and (21) taking into account (7) after some
calculations, we obtain an integral equation with respect to τ

′
1 (x):

τ ′1 (x) +

x∫
0

Q1(x, t)τ ′1 (t) dt = τ ′1(0) + Φ1(x), (x, 0) ∈ J1, (31)

where

Q1(x, t) = a1(t) +
µ 1(1− x)

2Γ(1− α1)

x∫
t

(1− z)a1(z)

(z − t)α1
dz − µ0(x− t)1−α0

Γ(2− α0)
, (32)

Φ1(x) =

x∫
0

a1(t)ϕ′1

(
t+ 1

2

)
dt−

x∫
0

b1(t)dt. (33)

Using of (2), (10), (12) from (32) and (33) taking into account the class W it follows that

|Q1(x, t)| ≤ c1 0 ≤ x ≤ 1, 0 ≤ t ≤ 1; (34)

and
Φ1(x) ∈ C

(
J̄1

)⋂
C 2 (J1) . (35)
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Thus, using of (34) and (35), the equation (31) is a Volterra integral equation of the second
kind. According to the theory of Volterra integral equations (Mikhlin, 1959) we conclude that
the integral equation (31) is uniquely solvable in the class

C
(
J̄1

)⋂
C2 (J1)

and its solution is given by the formula

τ ′1 (x) = τ ′1(0) + Φ1(x)−
x∫

0

Q∗1(x, t)
[
τ ′1(0) + Φ1(t)

]
dt, (x, 0) ∈ J1, (36)

where Q∗1(x, t) is the resolvent of the kernel Q 1(x, t). Integrating (36) from 0 to x taking into
account τ1(0) = ϕ2(0) = 0, we have

τ1 (x) =

x∫
0

[
τ ′1(0) + Φ1(t)

]
dt−

ξ∫
0

dt

t∫
0

Q∗1(t, z)
[
τ ′1(0) + Φ1(z)

]
dz, (x, 0) ∈ J̄1. (37)

Now after putting in (37) x = 1 taking into account ϕ1(1) = τ1 (1) = 0 we find the unknown
constant τ ′1(0):

τ ′1 (0) = −

1∫
0

[
Φ1 (t) +

t∫
0

Q∗1(t, z)Φ1 (z) dz

]
dt

1−
1∫
0

dt
t∫

0

Q∗1(t, z)dz

. (38)

Using (30), it follows from (32) that Q1(x, t) < 0, ∀ x, t ∈ [0, 1] . Therefore, the resolvent of the
kernel Q1(x, t) is also negative, i.e.

Q∗1(x, t) < 0, ∀ x, t ∈ [0, 1] .

So the denominator of the formula (38) for any 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 does not vanish, i.e.

1−
1∫

0

dt

t∫
0

Q∗1(t, z)dz > 0.

Using (34) and (35) of (37), taking into account (38), we conclude that

τ1(x) ∈ C1
(
J̄1

)⋂
C2 (J1) . (39)

By supplying (36) to (16) taking into account (10), (12), (39), we define the function ν−1 (x)
from class ν−1 (x) ∈ C

(
J̄1

)
∩ C1 (J1).

After excluding ν−j (y) and ν+
j (y) from the relations (18), (19) and (22), (23) taking into

account (8), (9) we obtain systems of integral equations with respect to τ
′
j (y) , (j = 2, 3):

τ ′2 (y)−
y∫

0

Q2(y, t)τ ′2 (t) dt =

y∫
0

M2(y, t)τ ′3 (t) dt+ Φ2(y, τ1), (40)

τ ′3 (y)−
y∫

0

Q3(y, t)τ ′3 (t) dt =

y∫
0

M3(y, t)τ ′2 (t) dt+ Φ3(y, τ1), (41)

where

Q2(y, t) =
µ2y(y − t)−α2

2Γ(1− α2)
− [1 + P2(y, t)] a2(y)√

π(y − t)
, (42)
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Q3(y, t) = −µ3(1− y)(y − t)−α3

2Γ(1− α3)
+

[1 + P3(y, t)] a3(y)√
π(y − t)

, (43)

Mj(y, t) =
2(−1)jaj(y)√

π(y − t)

[
e
− 1

4(y−t) +
+∞∑
n=1

e
− (1+2n)2

4(y−t)

]
, (j = 1, 2), (44)

Φ2(y, τ1) =
a2(y)

2
√
πy

1∫
0

+∞∑
n=−∞

e
− 4n2+ξ2

4y

[
ξ

y
ch4ξn− 2n

y
sh4ξn)

]
τ1 (ξ) dξ+

+ϕ′2

(y
2

)
+ b2(y) +

1

2
√
πΓ(1− α0)

y∫
0

dη√
y − η

×

×
1∫

0

+∞∑
n=−∞

e
− 4n2+ξ2

4(y−η)

[
ξ

y − η
ch4ξn− 2n

y − η
sh4ξn

]
dξ

ξ∫
0

(ξ − t)−α0τ ′1 (t) dt, (45)

Φ3(y, τ1) =
a3(y)

2
√
πy

1∫
0

+∞∑
n=−∞

e
− (x+2n)2+ξ2

4y

[
ξ

y
ch2ξ(

x+ 2n

2y
)− x+ 2n

y
sh2ξ(

x+ 2n

2y
)

]
τ1 (ξ) dξ+

+ϕ 3
′
(
y + 1

2

)
+ b3(y) +

1

2
√
πΓ(1− α0)

y∫
0

dη√
y − η

×

×
1∫

0

+∞∑
n=−∞

e
− (x+2n)2+ξ2

4(y−η)

[
ξ

y − η
ch2ξ(

x+ 2n

2y
)− x+ 2n

y − η
sh2ξ(

x+ 2n

2y
)

]
dξ

ξ∫
0

(ξ − t)−α0τ ′1 (t) dt.

(46)

and using lim
z→0

z−σe−
1
z = 0 for any fixed σ > 0 taking into account (11), (13), (39) we

conclude that
1) the kernels Qj(y, t), (j = 2, 3) are continuous in {(y, t) : 0 ≤ t < y ≤ 1} and at y → t

admits an estimate
|Mj(y, t)| ≤ c0(y − t)−

1
2 + cj(y − t)−αj ; (47)

2) the kernels Mj(y, t), (j = 2, 3) are continuous and bounded in
{(y, t) : 0 ≤ t ≤ y ≤ 1}, i.e.e .

|Mj(y, t)| ≤ cj , c0, cj = const; (48)

3) function Φj(y, τ1) belongs to the class Φj(y, τ1) ∈ C
(
J̄j
)
∩ C2 (Jj).

Thus, the integral equations (40) and (41) are Volterra integral equations of the second kind
with a weak singularity.

According to the theory of Volterra integral equations of the second kind (Mikhlin ,1959),
we conclude that the integral equation (40) is uniquely solvable in the class C(J̄2)∩C 2(J2) and
its solution is given by the formula

τ ′2 (y) = Φ2(y, τ1) +

y∫
0

M2(y, t)τ ′3 (t) dt+

+

y∫
0

Q∗2(y, t)

Φ2(t, τ1) +

y∫
0

M2(t, z)τ ′3 (z) dz

 dt, (0, y) ∈ J̄2, (49)
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where Q∗2(y, t) is the resolvent of the kernel Q2(y, t). Substituting (49) into (41), after some
transformations we obtain the Volterra integral equation of the second kind with respect to the
function τ

′
3 (y):

τ ′3 (y)−
y∫

0

Q̃3(y, t)τ ′3 (t) dt = Φ4(y, τ1), (0, y) ∈ J̄3, (50)

where

Q̃3(y, t) = Q3(y, t) +

y∫
0

M3(y, s)

M2(s, t) +

s∫
t

M2(z, t)Q∗2(s, z)dz

 ds, (51)

Φ4(y, τ1) = Φ3(y, τ1) +

y∫
0

M3(y, t)

Φ2(t, τ1) +

t∫
0

Φ2(z, τ1)Q∗2(t, z)dz

 dt. (52)

Using (11), (13), (39), it follows from (51) and (52) that∣∣∣Q̃3(y, t)
∣∣∣ ≤ c0(y − t)−

1
2 + c3(y − t)−α3 , (53)

a function Φ4(y, τ1) belongs to the class Φ4(y, τ1) ∈ C
(
J̄3

)
∩ C2 (J3). After solving the integral

equation (50), we get

τ ′3 (y) = Φ4(y, τ1) +

y∫
0

Q̃∗3(y, t)Φ4(t, τ1)dt, (0, y) ∈ J̄3, (54)

where Q̃∗3(y, t) resolvent of the kernel Q̃3(y, t).

Using τ2 (0) = τ3 (0) = 0 from (49) and (54), respectively, we find the function τ2 (y) and
τ3 (y):

τ2 (y) =

y∫
0

Φ2(t, τ1) +

t∫
0

M2(t, z)Φ(z, τ1)dz+

+

t∫
0

Q∗2(t, z)

Φ2(z, τ1) +

z∫
0

M2(z, s)Φ(s, τ1)ds

 dz
 dt, (0, y) ∈ J̄2, (55)

τ3 (y) =

y∫
0

Φ(t, τ1)dt, (0, y) ∈ J̄3, (56)

where

Φ(t, τ1) = Φ4(t, τ1) +

t∫
0

Q̃∗3(t, z)Φ4(z, τ1)dz. (57)

By supplying (49), (53) to (19) and (20) taking into account (8), (9), (11), (13), (17), (18),
(55), (56) define the function ν−j (y) and ν+

j (y) from the class

ν−j (y), ν+
j (y) ∈ C

(
J̄j
)
∩ C1 (Jj) , (j = 2, 3). (58)

Thus, the solution of the problem Aµ can be restored in the domain Ω0 as the solution of the
first boundary value problem for the equation(1) (see (22)), and in the domains Ωj (j = 1, 3)
as a solution of the Cauchy problem for the equation (1).

Hence, the ProblemAµ is uniquely solvable.
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5 Conclusion

In previous works by well-known scientists, boundary value problems for loaded second-order
equations of hyperbolic, parabolic, hyperbolic-parabolic and elliptic-parabolic types were stud-
ied, when the loaded part contains only the trace or derivative of the desired function. The
importance of this study lies in the fact that local and non-local problems for loaded equations
of mixed type of the second order with three lines of type substitution, when the loaded part
contains a fractional-order integro-differential operator, have not been found. Based on this, we
have investigated a local boundary value problem for a loaded parabolic-hyperbolic equation
with three lines of change type, when the loaded part contains an integro-differential operator
of fractional order.
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